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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL NOTE D-i834

ON THE ERROR PROPAGATION OF SOME INTERPOLATION

FORMULAS FOR SECOND-ORDER DIFFERENTIAL EQUATIONS

By

Erwin Fehlberg

SUMMARY

Simple extrapolation formulas are presented for the propagation of the trunca-

tion error for interpolation formulas integrating y" = f(x,y). These error formulas

are applied to the interpolation formulas of Milne and Gauss, and their accuracy is

illustrated by examples.

The error formulas are extended to cover the case of interpolation formulas

for y" = f(x,y,y'). The interpolation formulas of Milne and Gauss are supplemented

by new formulas for y' in such a way that the combined formulas have the same small

error parameter E as the original formulas of Milne or Gauss. Examples demonstrate

the accuracy of the error formulas for these new interpolation formulas.

SECTION I. INTRODUCTION

This technical note deals with the propagation of the truncation error of inter-

polation formulas as used in the numerical integration of second-order differential

equations.

Of primary interest are formulas that have a small truncation error or formulas
that propagate only a small fraction of their truncation error. In an earlier paper a we

investigated the error propagation of such interpolation formulas and presented a simple

a. E. Fehlberg, Numerically Stable Interpolation Formulas with Favorable Error Pro-

pagation for First- and Second-Order Differential Equations, NASA Technical Note

D-599, March i96i.



formula for the ratio of the propagated truncation errors of two such interpolation
formulas. In this notewe investigate the propagatedtruncation error itself. We shall
show how this error can becomputedin conjunction with the computation of the solution
of the differential equation.

The ratio of the propagated truncation errors is of interest in comparing differ-
ent interpolation formulas. The propagatedtruncation error itself, if computedin con-
junction with the solution of the differential equations, offers a convenient check of the
accuracy of the computation.

We have simplified the theory of the propagatedtruncation error as much as
possible, so that the necessary computationscan be performed quickly and easily.
Nevertheless, our examples do show that goodresults can be obtained, even for a large
number of integration steps.

This paper does not deal with the round-off error and its propagation. Wepro-
grammed our interpolation formulas for the digital computer in such fashion that the
round-off error was reducedas much as possible. Then, to study the propagation of
the truncation error, we selected an integration step size causing a dominant trunca-
tion error.

Oneimportant consideration in problems that require an extensive number of
integration steps is that of reducing time on the computer. This can be doneby in-
creasing the integration step size, thereby committing a dominant truncation error.
In such cases, however, it is almost mandatory to know the magnitude of the propagated
truncation error in order to insure that the result of the integration is still sufficiently
accurate.

Assume that the output of the digital computer consists of numbers with q digits,
Then, in doubleprecision, the computer will furnish numbers with 2q digits. If, after
an extensive number of integration steps, results with q-digit accuracy are desired,
the computation will have to be started with more than q correct digits (becauseof
unavoidable error accumulation). In many cases, however, the computationwill not
have to be started with the maximum of 2q correct digits. Instead, it might suffice to
select the integration step size in such fashion that the last q' digits (0 < q' < q) of the
2q-digit numbers are already affected by the truncation error. We then encounter a
situation where the truncation error exceedsthe round-off error. In suchcases the
propagated truncation error, computation of which is described in this technical note,
is practically identical with the total error.

l
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SECTIONII. ERRORPROPAGATIONOF INTERPOLATION
FORMULASFORTHE DIFFERENTIAL EQUATION
y" = f(x,y)

A. THEORY OF THE ERROR PROPAGATION

In this section we consider differential equations:

y" = f(x,y) (1)

and interpolation formulas of the form:

m m

= + h2 _'1 B"Yk+i _ Bk-t_ Yk-p -- k-p fk-p (2)
#=0 p= -m '

The constants Bk_ p and B"k_# are determined by the Taylor expansion of (2) for x = xk
Comparing the coefficients of the expansion for the first powers of h, the following

equations are obtained ( Bk+ 1 = - 1) :

m

Bk_p = 0
p=-.1

m

_ Bk_p = 0
p=-I

m m

lZ , B,
Bk-p k-p

/_=-I #=-m'

=0

(3)

If we denote the true values of the solution of (l) by Y(Xk_p) and the approximate values

of this solution as obtained from (2) by Yk-p' the errors:

Yk-g - Y(Xk-p) = Ck-g (4)

satisfy the equation:

m mBk_ p ek_ p+h 2 _ B" Of +... : Tk
/2=-I p=-m' k-p k-# ek-_

Here, T k stands for the truncation error at x = x k. The dots on the lefthand side of

(5) are to indicate that we have omitted terms with e2 and higher powers of ek_ #,k-#

O

(5)



Such terms will henceforth be neglected. Let the interpolation formula (2) approximate

the solution of (1) correctly up to the term h p, inclusively, of the Taylor expansion.

The first term of the truncation error T k in (5) then reads:

(p+lI hp+l (6)
T k = Cp+ 1 Y _xk)

Cp+ i being a constant that depends on Bk_ p and B"k-#"

tl

Inserting the Taylor expansion:

(7)
, 1 /_2 h2 ¢_ ......¢k-p = :k- ph ¢k+ : - +

in (5), neglecting all terms with h3 and higher powers of h on the lefthand side of (5),

and taking into account (3), we obtain:

i h2 e_ m (___.f_ m (p+l) hp+l,_ /_2 l_h2 = C y (Xk)
p=-I Bk-p- 2 aY/k ¢k _ _2p=-I Bk-p p+l

if only the first term of the truncation error is considered.

The last equation yields the following differential equation for the propagation

of the truncation error:

e" a f 2 Cp+ 1 (p+l)_he- y (x) hp-i
0y m

p2 Bk_p
#=-1

By integrating (8), the propagated truncation error c(x) can be obtained.

Let q(x), Q(x) be a fundamental system of the homogeneous equation (8).

Then the general solution of the non-homogeneous equation (8) can be written as:

7
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x y _2(x)
e(x) : Q(x) m 2 Cp+ I hP-i f _l(x) ¢_(x)- el(x) _2(x)dx +h i

p2 Xo
Bk- _

//=-I

f (p+l) )

2 C x y (x) el(x)

, p+l hP-1 f Q(x) c_(x) el(x) e2(x) dx + h 2+ _2(x) m

__n /_2 Xo
Bk- p

p=-i

with h i and h 2 as constants of integration.

Let us assume that, for the initial point x = x 0, the initial values y(x 0) and

y'(x 0) have no error. This means e(x 0) =0and U(x 0) =0. Then from (9):

Q(x 0) h 1+ e2(x 0) h 2 =0

_(x O) h 1 + _(x O) h 2 = 0

or h i = 0, h 2 = 0 since Wronski's determinant of the fundamental system Q(x), e2(x)
cannot be zero.

(9)

The expression (9) thus reduces to

2 Cp+ 1 fe

e(x) h p-1
- m 2(x)

p2 Bk_p
/z=_l

x Q(x) (p+l)

f el(x) e_(x) - e'l(x) 62(x) y (x)
Xo

- Q(x)
x e2(x) (p+l)

£
(x)

J el(x) e_(x) - c_(x) c2(x) Y

Xo

dx

(lo)

Since different interpolation formulas (2) of the same order p differ only in the values

B"k_p and in the constant Cp+ 1 resulting from these coefficients,of the coefficients Bk_p,

it clearly follows from (10) that the ratio of the propagated t_xmcation errors for two

such different formulas (2) is equal to the ratio of the parameters

8



C
E = p+l

m

p2 Bk_p
#=-1

(11)

b
of these formulas.

If not only the ratio of the errors but the errors themselves are wanted, formula

(10) would have to be evaluated. But obviously only in very few exceptional cases can

this be done, since in general no fundamental system Q(x), ez(X) is known and the
(p+l)

(p+l) st derivative y (x) of the solution of the differential equation is also unknown. In

paragraph B we will evaluate (10) for such an exceptional case.

But in general, in order to compute the error e(x) along with the computation

of the solution y(x), one will have to integrate numerically the differential equation (8)

for this error. This can be done by simple extrapolation formulas such as:

52 6k =h2_'0fh 6k 2E 6p-1 fkl (12)Lt Jk +
(p+l) (p-l)

Here the derivative y (x) = f (x) in (8)has been replaced by the difference quotient

5 p-1 f/h p-i, since the central difference 5P-if is easily obtainable from the difference

scheme of the f-values.

Formula (12) can be considered as the first part of Milne's formula (18) or

Gauss's formula (22); the truncation error of (12) reads --_ yIV(x, )h4.
IZ _ K

Whenever the round-off error can be neglected for the computation of c(x), we

have obtained from (12) reasonably close approximations for the total error. We refer

to our examples in paragraph D.

B. ERROR PROPAGATION FOR A SPECIAL DIFFERENTIAL EQUATION

Let us consider the special differential equation:

y" = f(x,y) = - y (13)

b. The expression (ll) is identical with formula (28) in NASA TN D-599 (footnote a)

if differential equations (1) and interpolation formulas (2) are considered in the TN.

9
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and the initial conditions:

x 0= 0, Y0= i, y_=0

The solution of this problem then reads:

y = cos x

For this example, c(x) can easily be computed from formula (10).

of (10), let us assume p = 7, as we will always do in our later examples in Sections

II. D and III. D.

(i4)

For the evaluation

Then:

(p+0

y (x) = COS X

As a fundamental system of the homogeneous equation (8), the functions

E1(x) = cos x, ¢2(x) = sin x

can be used.

Formula (10) then reads:

2C 8
e(x) =

m

/_2 Bk_#
_= - 1

{ Yh 6 sin X COS2X dx - cos x

O
x }f cos x sin x d

O

or:

C 8 c

E(x) =
m

#2 B

p-=-i k-p

h 6 x sin x (15)

Note that the error (15) does not again have the character of a cosine or sine wave, but

is of the form x sin x. This means that the increase of c(x) with increasing x can only

Co If ¢(x0) =0, e'(x0) = 0is replaced by E(x0) =0, E(x0-h) =0, formula (15) changes

only slightlyto: C 8

E(x) = h 6 (x + h) sin x (i5a)
m

p2 B

7



be delayed but not prevented by a small factor C p2
t Bk-f

C. ERROR PROPAGATION FOR THE INTERPOLATION FORMULAS OF MILNE

AND GAUSS

Here and in Section III. C. we only consider interpolation formulas which are

based on differences of the f-values, since for such formulas the difference 5 p-1 fk that

enters the error equation (12) can easily be obtained from the difference scheme of the
f-values.

d
1. The Backward-Difference Formula of Milne. We replace the right-hand

side of (1) by Newton's interpolation formula with ascending differences:

where we have put"

pm_

u

(16)

Integrating (16) from x = Xk_ 1 to x or from u = -1 to u, yields

p-2

u(u- Yk-1 fk+l p
p=0 -1

Another integration with the same limits results in:

p-2 _ u
Y - Yk-I- Yk-l(X-Xk-1 ) = h2 2 Vo fk+l f

p=O -1 - 1
u+ p- 21 duduP

(17)

Writing (17) for x = x k (u = 0) and for x = Xk+ 1 (u = t), and eliminating from these two

!

equations the term with Yk-l' leads to Milne's formula:

_ = 5 2 = h 2 V p
Yk+l 2 Yk + Yk-1 Yk Mp fk+l

p=O

(18)

dl Bennett, A. A., Milne, W. E., and Bateman, H. :

ential Equations. Dover Publications (New York),

I1

Numerical Integration of Differ-

1956, pp. 81-83.



with

J fMp= dudu- 2 dudu
-1 -1 P -1 -1 P

For the first term of the truncation error of Milne's formula (18) we find:

(p+l) hp+l
Wk = Mp_ 1 Y (x k)

The first coefficients Mp are presented in Table I.

(19)

(20)

TABLE I: VALUES OF Mp

P

Mp

P

Mp

0 1 2 3 4

1 -1 1/12 0 -1/240

5 6 7 8

-1/240 -221/60480 -19/6048 -9829/3628800

For the error parameter 2E of equation (12), we find in the case of Milne's formula:

2E =-M
p-1

(21)

,

formula of Gauss reads:

e
The Central-Difference Formula of Gauss.

I p-5 t
= h 2 6 -2 52<_ f

Yk+l fk+l + _ N2_-2 k+l
2p=O

The central-difference

(22)

with p > 5 and odd.

The first coefficients N2p+2 of (22) are given in Table II.

e,

ff

For the derivation of this formula see, for instance, Nystrom, E. J., Acta

Societatis Scientiarum Fennicae 50 (1925), No. 13, pages 33-37.

12



TABLE II: VALUES OF N
2p_2

p 0

N2p+2 1/12

i 2 3

-I/240 31/60480 -289/3628800

-2
According to the definition of the second sum function 6 f we have

6 -2 - 2 5 -2 6 -2
fk+l fk + fk- 1 = fk

and according to the definition of the (2p+2)rld difference 62P+2f:

(23)

52P fk+l

From (22) we then obtain:

= 52p+2- 2 52p fk + 52p fk-_ fk

Yk+l = 2 Yk - Yk-1 + h2 +
k 2p=o N2p+2

52p+2 fk} (24)

The first term of the truncation error of (22) or (24) is found to be:

(p+1) h p+I
T k = Np_ 1 Y (x k) (25)

and the error parameter 2E for (22) or (24) becomes:

2E = - N (26)
p-!

From (21) and (26) and the values of Tables I and II, R follows that the propagated

truncation error of Gauss's formula is, for example, forp = 7 only i4 per cent and for

p = 9 only 3 per cent of the error of Milne's formula.

D. EXAMPLES

All examples presented in this paper were computed on an IBM-7090 machine

in double precision (16 digits). For all examples we have computed 100,000 steps of

integration in order to observe the error behavior over a longer period of time. For

each example all steps were computed with a constant step size. To start the

,o 13



integration procedure we have used the first f-values as obtained from the exact solu-

tion of the problem.

ExampleA: y"=-y , x 0=0, Y0 = t, y_0 , h=0.04 Solution: y=cosx

= = ' =-1 , h=0.01 Solution: y=i/xExample B: y"=2/x 4y, x 0 1, Y0 i, Y0

= = , ' =-1/2, h=0.02 Solution: y=qf_ -Example C: y"=-l/4xy, x 0 1, Y0 t Y0

In the following Tables IIIa and IIIb we present for these three examples the errors
after 1, 50,000, and 100,000 steps of integration. Table IHa shows the errors for

Milne's formula (18) and Table IIIb for Gauss's formula (22). Both tables show, in

the third column, the actual errors Yk+2 - Y(Xk+2)' and in the fourth column the

approximated errors obtained from (12). For example A we have also presented
the error values from (15a).

TABLE ma. ERRORS FOR FORMULA (18)

Example

A

B

C

No of

Steps

t

50,000

_00,000

I

50,000

100,000

I

50,000

100,000

Actual Errors

-13
O. 2393:10

O. 1416. 10 -7

-7
-0. 1943" 10

-13
O.1621. tO

-9
O.3654" i0

-9
O.2304" I0

Approximated Errors

from (12) from (15a)

0.2394.10 -23

0.1324.10 -7

-7
-0.2312.10

0.1484.10 -23

-9
0.3347"10

0.2114.10 -_

0.2394.10 -13

0.1392.10 -7

-0.2046.10 -7

-23
-0. 5906" 10

-0. 6827.10 -7

-0. 1577.10 -6

-0.5129.10 -23

-0.5980.10 -7

-0.1380. i0-6

il



TABLE lllb. ERRORS FOR FORMULA (22)

Example

A

B

C

No of

Steps

1

50,000

100,000

1

50,000

iO0,000

1

50,000

100,000

Actual Errors

-14
-0. 3775' iO

-0. i951" 10 -8

O. 2875" 10 -s

-14
-0. 2331.10

-lo
-0. 4625" iO

-0.29i2" 10 -t°

-14
O, 7327. 10

O. 7980" 10 -8

-7
O. 1831" 10

Approximated Errors

from (12) from (15a)

-0.3358' 10 -14

-0. 1895" 10 -8

-8
O. 3243.10

-14
-0. 2082. iO

-lo
-0.4695.10

-lO
-0.2966.10

-14
O. 7194. 10

-8
O. 8388.10

-7
O. 1935. 10

_0.3358.10 -I4

-0.1953. i0 -8

-8
0.2870"i0

It might be possible to obtain a better approximation of the actual errors

in the third column by a more accurate treatment of the error propagation, but the

improvement that can be gained is probably not worth the complications that arise in

a more accurate theory. Since we only want to know the approximate magnitude of the

error, the simple and fast procedure that we have described in paragraph A seems to

be sufficient.

SECTION I/I. ERROR PROPAGATION OF INTERPOLATION FORMULAS

FOR THE DIFFERENTIAL EQUATION y" = f(x, y, yV)

A. THEORY OF THE ERROR PROPAGATION

We now consider differential equations:

y"= f(x, y, y') (27)

12



aad interpolation formulas of the form:

m m

h Yk+l = _ Ak-p Yk-p + h2 _ A__# fk-p
//=-i _= -m '

m m

+ h 2 _ B"Yk+t = _ Bk-p Yk-p k-p fk-p
p=o #= - m '

(28)

Expanding the first equation (28) in a Taylor series for x = x k and comparing the
coefficients for the first h-terms of the expansion results in t/ie following relations for

T! •

the coefficients Ak_ #, A__p.

m

Ak_ p = 0
p= - 1

m

1+ _ PAk_#=O
p=-I

m m
1

- Ak_ - Z
p,= -i p= -m'

=0

For the coefficients Bk_p, B"k_p the equations (3) stillo hold.

By introducing the errors:

Yk-u _ Y(Xk-u) = Ck-p ]

' y' (x k ) = _1Yk-# -/_ k-/_

in (28) we obtain for these errors:

m

-h V/k+l + _ Ak-p _k-_ + h2
#= - 1

+ _k-p
p=-m' -P L \ayl/k-p _k-. -P

--m' _k- + ''" = Tk

m

_ + h 2=-1 Bk-_ Ek-p

(29)

(30)

(31)

13



= ' and Tk, respectively. In the followingdenoting the truncation errors for x x k by T k
f

' and T k are of the same order in h.we always assume that the truncation errors h T k

Then we can write:

!

h T k

(p+l)

T k=Cp+ ly (x k) h p+I

(p+D

= C _ y (x k) h p+I
P

(32)

We now introduce the Taylor expansions:

= ek # h , + i #2 h 2 ,,_ +Ck-p - Ck 2 ek ......

= _ t + t p2 h 2 . _ +
_k-p _?k ph_?k 2 _?k ......

(33)

in (31). By making use of (3) and (29) and by neglecting higher order terms in the

same way as we did in Section II. A., we find for the propagated truncation error the

following differential equations:

m

e'-_=y (x) hp "-Cp+ I

_, #2 Bk_g
p= - 1

2 C (p+l)
Of Of p+l

e"---_--_,_- y (x)3y __ m

_, p2 Bk_#
p= - 1

hp- 1

(34)

fo ' is already of the same order inhas T k do notInterpolation formulas for which T k

improve the error propagation compared with formulas for which (32) holds. We

therefore restrict ourselves to formulas for which (32) holds.

14



We solve the first equation (34) with respect to _ and substitute this q-value
in the secondequation (34). Thug_wefind:

2C
af 8f E+l

e"- _---,0yU--_¢- m

#2 Bk_p
p=-I

(p+l)

In (35) we have neglected the term with y ix)

only the term with the lowest h-power.

(p+l)
y ix) h p-1 (35)

h p, retaining on the right hand of (35)

Comparing (35) with (8) we see that these two formulas differ only by the term
8f

_' on the left-hand side. This means that the solution (i0) of (18) also holds for

(35), provided that q(x),

equation (35).

¢2(x) is now a fundamental system of the homogeneous

According to (10), E(x) as well as U(x) contains the factor h p-I. On the other

hand, according to the first equation (34), r/(x) and U (x) differ by a term that contains
the power hP. This means, because of the terms we have neglected, that we can iden-

tify r/(x) with c'(x).

Then in the case of the differential equation (27) and the interpolation formulas

(28), the propagated truncation errors c(x) aad z/ix) = E' (x) are determined as solu-

tions of (35).

It is evident that because of the terms we have neglected, the truncation error

' nowhere enters the formulas for the error propagation.' of the formula for Yk+lT k

Since the right-hand sides of (35) and (8) are identical, the ratio of the pro-

pagated truncation errors _(x) and _(x) for two different formulas (28) is again

identical with the ratio of the E-values (li) for these two formulas.

This suggests the idea: (a) to retain also in the case of the differential equation

(27) formulas for yk+fWhich have been recognized as favorable with respect to error

propagation in the case of the differential equation (i) - we mean such formulas as

Milne's formula (18) or Gauss's formula (22); and (b) to establish for Yk+l' formulas

of the form of the first equation (28) with the only restriction being that the truncation

errors T k and hT_ - according to (32) - must be of the same order in h. We shall

present such formulas for Yk+l' in paragraph C.

18
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Applying interpolation formulas of the form (28), the E-values that Wehave
stated in Section II for differential equations (i) andinterpolation formulas (2) will
also hold in the more general case of differential equations (27).

This is, of course, only possible for interpolation formulas of the form (28).
if we consider as an example interpolation formulas of the Adams type:

For

' = ' +h _A"Yk+l Yk k-p fk-#

' h + h2E B"Yk+l = Yk + Yk k-p fk-p
P

> (36)

we obtain, instead of (34) :

(p+l)

e' -r_=-Cp+ ly (x) h p

8f 8f (p+l)

_'-_Ty E--_,rj=-C'p y (x)
hP-1

(37)

In (34) the lowest power of h, h p-l, is multiplied by the factor C (for the
p+lm

formulas of Milne and Gauss in Section II we have _ #z Bk_p = -2). In (37), however,
m=-i

the power h p-1 carries the factor C'. But for all known interpolation formulas the
P

coefficient Cp+ 1 in (32) is considerably smaller than C'.p For this reason our inter-

polation formulas (28) are more appropriate than, for example, Adams type formulas,

if a favorable error propagation is desired.

For the computation of the errors ¢(x) and rT(x) = C(x), we again have to integrate
the differential equation(35)numerically. We again apply very simple extrapolation

formulas; namely:

52 (_lk { 8t-_) (8-_1 k 5P-1 k} 1

=h k Ck+ ck' +2E f =h F k

(h)k {5 1 }e' = 6 + h F k - _ Fk_ 1
k+l +1/2

(38)
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The first formula (38) corresponds to formula (12) of Section II; the second

formula (38), which can easily be derived, has the truncation error:

7
_-_ yIV(x) h z.

The examples in paragraph D below will show that (38) leads to satisfactory

approximations for the propagated truncation error.

B. ERROR PROPAGATION FOR A SPECIAL DIFFERENTIAL EQUATION

We again consider a special differential equation for which the solution (10)

of the error equation (35) can be computed directly:

y" = f(x,y,y') .. -y -y' - sin x , (39)

For the initial conditions

= v= 0x 0 0, yn = 1, Y0

the differential equation (39) has the solution:

For p = 7 we have again:

y = cos x (40)

(p+l)
y (x) = cos x

As a fundamental system of the homogeneous equation (35) we obtain:

o+x -= cos ( x), e2(x) = e _- x sin (2

For our problem (39), (40), the general solution of the non-homogeneous equation

(35) is found to be:

2 C8

m

#2 Bk_#

#_--- -- 1

4- 2h 2 e-_ x

h 6 sinx- 2h le -_" x

2O
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hi, h2being constants, the values of which are determined by the initial values for
e(x 0) and c'(x 0) or for e(x 0) and ¢(x 0 -h).

1

Whatever the values for h 1 and h 2 may be, due to the factor e -_" x the terms with

h 1 and h 2 can be neglected for sufficiently large values of x. For large values of x the
errors c(x) and e v(x) then reduce to :

2 C 8 2 C 8

¢(x) = h 6 sin x_ e'(x) = _(x) =
11i m

Bk_ p Bk-p
p=-I p=-I

h 6 cos x (41)

Contrary to our former result ( 15), the error e(x) has here the character of a sine-

wave and does not grow with x. g

C. FORMULAS FOR Yk+l' SUPPLEMENTING THE FORMULAS OF MILNE AND

GAUSS IN THE CASE OF A DIFFERENTIAL EQUATION y" = f(x,y,y')

t. A Supi_!ementary Formula for Milne's Formula. We start from the

interpolation formulas of Adams:

p-2
g_

' = ' + h _ D' V _Yk+i Yk p fk+i

P=0

p-2

= 'h+h 2 _DYk+l Yk + Yk P
P=O

(42)

the coefficients of which are given by:

o (u+p- 1) du t

Dr=J p
P -1

P
-1 -1

p=O, 1, 2, ... (43)

gm
The fact that the error propagation depends on the fundamental system of the homo-

geneous equation (35) or, in the case of Section II, equation (8), is well-known and

needs no further discussion.

21
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' and substituting this expres-Solving the secondformula (42) with respect to Yk
' in the first equation (42) leads to:sion for Yk

p-2

h Yk+l = Yk+l - Yk + h2 _ M'p V p ..f_'+l (44)
p=0

with:

M' =D' -D (45)
P P P

Formula (44) has the form of the first interpolation formula (28) and can be used in

combination with Milne's formula (18).

Table IV presents the first coeefficients M r of (44).
P

TABLE IV. VALUES OF M'
P

P

M !

P

P

M !

P

1/2

-107/10080

-1/6

6

-1/24 -1/45

-199/24192 -6031/907200 -5741/1036800

-7/480

The first term of the truncation error of (44) becomes:

(p+l)

' = M' xk) h p+IhT k p_lY (
(46)

As explained in paragraph A, the pair of formulas (18), (44) leads in the case

of the differential equation y" = f(x,y,y') to the same small error parameter E as

formula (18) does in the case of the differential equation y"= f(x,y).

2. A Supplementary Formula for Gauss's Formula.

differential equation y!' = f(x,y,y'), Gauss has already combined

ence formula (22) with the following central difference formula for ' •Yk+l"

In the case of the

the central differ-

Yk+l = h {6 -1 fk+l/2 P-° }2p+2 (P > 5 and odd)
2P=O

22

(47)
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The first coefficients N' of (47) are listed in Table V.
2p_

TABLE V. VALUES OF N'
2p+2

p 0 1 2 3

N' -1/t2 11/720 -i91/60480 _497/3628800
2/9+2

However, the combination of the formulas (22) and (47) meets with certain

difficulties with respect to the propagation of the truncation error. These difficulties,

which wewillnow explai_ are related to the build-up of the sum functions 5-1 f 1 ink+2-
-2

(47) and 5 fk in (22).

Applying (22) to the integration of a differential equation (1), the build-up of

the second sum function is given by (23). To start the integration the first two values
of the second sum function:

Yk-i p-5 5 ap
5-2 fk-i - h 2 - _ N2p+2 fk-1

2p=o

Yk -5 52P fk5-2 fk = -_ - _ N2p+2

2/>=o

(48)

have to be determined from the initial difference scheme of the f-values. According

to (23), the next value 5 -2 fk+l is then based on the two values (48) and on fk' etc.

If we now apply (22) and (47) to the integration of a differential equation (27)

for each of the two sum functions 5 -1 fk+l and 5-2 fk+l' one starting value:

' p-5-I Yk 1

6 fk-1/2- h -2 fk- _ N'2p+2
2p=0

Yk - 52P fk5-2 fk - h 2 - pf N2p+2

2p=o

(49)
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has to be determined from the initial difference scheme of the f-values. The succeeding

values 6 -1 fkt_"1 and 5 -2 fk+l are then computed from:

5 -1 f 1 = 5 -2k+ r fk-_ + fk

5-2 = -2 -1 -2 5-1 fk- +fk+_ 5 fk + 5 f _ = 5k+_ fk + fk

(50)

etc.

If we now introduce the first equation (50) and the first equation (49) in equation

(47), we find:

' = ' +h (fk + + _ N' fk+Yk+l Yk fk+l ) 2p+2
2/>=o

(51)

In the same way the introduction of (50) and (49) in (22) leads to:

II _ p-5
Yk+ : Yk+ h+ fk* fk+ - N, ?/9÷2

2/9=0 2/9+2 2/9=0 2/9+2

(52)

The first term of the truncation error of formulas (5t) and (52) reads:

(_I hp+i' = N' (53)
h T k p_ly

and

(p)

= -N' ) y (x k) h p, (54)Tk (Np-1 p-1

respectively.

We have thus obtained the result that Gauss's formulas (22), (47) become equiv-

alent to (51), (52), this means to formulas of the type (36I, if we build up the sum

functions according to (49) and (50). But we have already seen that formulas of the

type (36) are inferior to formulas of the type (28) as far as the propagation of the trun-

cation error is concerned. Furthermore, formula (52) does not have the required

accuracy, since the truncation error (54) is proportional to y(P)(x k) hp instead of

(p+l) hp+l
proportional to y (x k)

24
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Let us now try to transform Gauss's formulas (22), (47) into formulas of the
type (28) by a different build-up of the sum functions. This can be doneif we base the
sum functions not on the starting values (49), but on the starting values (48), as we
have donein the case of the differential equation (1), and compute the next values of the

6-2 =25 -2 fk 5-2 +fkfk+l - fk-I

f5-1 fk+_- 6-2 -2= fk+l- 5 fk

sum functions from:

(55)

If we do so, (22) again transforms to (24) whereas (47) becomes:

k+l = h (Yk+t - Yk ) + h fk+l N' _2p+12/94"2
fk+l p 5 N2p+2 62p+I fk+

2p=0

(56)

Formula (56) has the desired form of the first interpolation formula (28). However,

we meet here again with the difficulty that the truncation error of (56) is not of the

required order in h, since we find for the first term of this truncation error:

(p)

h T_= (N'p_l-Np_l) y (x k) h p (57)

As in (54), we are again short in (57) by one power of h.

To overcome this difficulty we now introduce in (47) an additional term that

does not change the form of (56), but yields a truncation error of the required order

as stated in the second formula (32). Such a modified formula (47), the sum functions

of which are based on (48) and (55), combined with the unchanged formula (22) will

then lead to the same favorable error parameter E that we have obtained for the formula

(22) in the case of the differential equation y" = f(x,y).

As such a modified formula (47) we use:

f p-5 _ tY_+1=h (5-Ifk+l +'_fk+1+ _ N' 6_p+I + (N' - N ) _p-2 fk+l
2p=o 2p+2 fk+l p-1 p-I (58)
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It can easily be verified that (58) has the desired i_roperties.

The first term of the truncation error of (58) is found to be:

(p+l)
v 1 hP+l

h T k =_np_ 1 y (x k) (59)

In the case of the formulas (22), (58) we can again compute the errors c(x) and rl(x) =

¢'(x), along with the integration, by applying the simple extrapolation formulas (38).

D. EXAMPLES

Tables Via and VIb report the error results of the supplemented Milne

formula (18), (44) and for the modified Gauss formulas (22), (58) - sum functions

built up according to (48) and (55) - for the following three examples:

ExampleD: y"=-y_-y'-sinx;x0=0, Y0=l, y_=0, h=0.04, Solution: y:_cosx

sin x
ExampleE: y"=y' cos x -y sin x; x 0=0, Y0 = 1, y_= 1, h = 0. 02, Solution: y=e

Example F: y"=2y'2/y, x0 = 1, y0=l, Y6=-l, h =0.02, Solution: y= 1/x

In order to demonstrate that our modified Gauss Formulas (22), (58) indeed

have smaller propagated truncation errors than the original Gauss Formulas (22),

(47), we show in Table VII the error results for Example E using these two methods.

The values of Table VII are the actual errors Yk+_ - Y(Xk+l)" The difference in the

magnitude of the errors is rather obvious for these two methods.

SECTION IV. FINAL REMARKS

We have already mentioned in the introduction that our statements about the

error propagation only hold if the truncation error outweighs the round off error.

Whether or not this is true for a certain step size of integration can easily be checked.

After the first step of integration, it is immediately seen from (12) and from
(38), respectively, whether for the chosen step size the error e still has the same

order as the round-off error. We then select an initial step size for which the trunca-

tion error becomes dominant. This, of course, does not yet guarantee that the trunca-

tion error still remains dominant after a large number of integration steps. Therefore,

it is advisable to inspect, along with the computation, the difference 6 p-1 fk that enters

23



the formulas (12) and (38}, respectively. If this difference starts to show irregulari-
ties, the round-off error has already affected the last columns of the difference scheme
for the f-values.

However, in such a ease, the round-off error has not yet necessarily affected
our error values _ and _', respectively. As long as the term 2E 5p-i fk in (12) or

/" l

(38) remains small compared with af Ck or with a(_) ek+ (a_r) c_, our error_)k k k

values will not be materially influenced by the round-off error,

In Table VIII we present, for example C, the last steps which we have computed

with Gauss's formula (22). The irregularities in 2E 56 fk are quite obvious in this

table. They occur after 10,000 steps in much the same way as they do in this table after

t00,000 steps. Nevertheless, our error values (12) are still in good agreement with

the actual errors due to the fact that in this example (for the step size h = 0.02) the

term 2E 56 fk always remains small compared with a(-£'7.) Ck •
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